Sciweavers

ICML
2005
IEEE

Reducing overfitting in process model induction

15 years 9 days ago
Reducing overfitting in process model induction
In this paper, we review the paradigm of inductive process modeling, which uses background knowledge about possible component processes to construct quantitative models of dynamical systems. We note that previous methods for this task tend to overfit the training data, which suggests ensemble learning as a likely response. However, such techniques combine models in ways that reduce comprehensibility, making their output much less accessible to domain scientists. As an alternative, we introduce a new approach that induces a set of process models from different samples of the training data and uses them to guide a final search through the space of model structures. Experiments with synthetic and natural data suggest this method reduces error and decreases the chance of including unnecessary processes in the model. We conclude by discussing related work and suggesting directions for additional research.
Will Bridewell, Narges Bani Asadi, Pat Langley, Lj
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2005
Where ICML
Authors Will Bridewell, Narges Bani Asadi, Pat Langley, Ljupco Todorovski
Comments (0)