In tandem with recent progress on computing on encrypted data via fully homomorphic encryption, we present a framework for computing on authenticated data via the notion of slightly homomorphic signatures, or P-homomorphic signatures. With such signatures, it is possible for a third party to derive a signature on the object m from a signature of m as long as P(m, m ) = 1 for some predicate P which captures the “authenticatable relationship” between m and m. Moreover, a derived signature on m reveals no extra information about the parent m. Our definition is carefully formulated to provide one unified framework for a variety of distinct concepts in this area, including arithmetic, homomorphic, quotable, redactable, transitive signatures and more. It includes being unable to distinguish a derived signature from a fresh one even when given the original signature. The inability to link derived signatures to their original sources prevents some practical privacy and linking attacks, ...