The rapid growth of location-based applications has spurred extensive research on localization. Nonetheless, indoor localization remains an elusive problem mostly because the accurate techniques come at the expense of cumbersome war-driving or additional infrastructure. Towards a solution that is easier to adopt, we propose SpinLoc that is free from these requirements. Instead, SpinLoc levies a little bit of the localization burden on the humans, expecting them to rotate around once to estimate their locations. Our main observation is that wireless signals attenuate differently, based on how the human body is blocking the signal. We find that this attenuation can reveal the directions of the APs in indoor environments, ultimately leading to localization. This paper studies the feasibility of SpinLoc in real-world indoor environments using off-the-shelf WiFi hardware. Our preliminary evaluation demonstrates accuracies comparable to schemes that rely on expensive war-driving. Categorie...