Sciweavers

ICML
2003
IEEE

Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning

15 years 1 months ago
Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning
We present a novel Bayesian approach to the problem of value function estimation in continuous state spaces. We define a probabilistic generative model for the value function by imposing a Gaussian prior over value functions and assuming a Gaussian noise model. Due to the Gaussian nature of the random processes involved, the posterior distribution of the value function is also Gaussian and is therefore described entirely by its mean and covariance. We derive exact expressions for the posterior process moments, and utilizing an efficient sequential sparsification method, we describe an on-line algorithm for learning them. We demonstrate the operation of the algorithm on a 2-dimensional continuous spatial navigation domain.
Yaakov Engel, Shie Mannor, Ron Meir
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2003
Where ICML
Authors Yaakov Engel, Shie Mannor, Ron Meir
Comments (0)