Today’s data centers face extreme challenges in providing low latency. However, fair sharing, a principle commonly adopted in current congestion control protocols, is far from optimal for satisfying latency requirements. We propose Preemptive Distributed Quick (PDQ) flow scheduling, a protocol designed to complete flows quickly and meet flow deadlines. PDQ enables flow preemption to approximate a range of scheduling disciplines. For example, PDQ can emulate a shortest job first algorithm to give priority to the short flows by pausing the contending flows. PDQ borrows ideas from centralized scheduling disciplines and implements them in a fully distributed manner, making it scalable to today’s data centers. Further, we develop a multipath version of PDQ to exploit path diversity. Through extensive packet-level and flow-level simulation, we demonstrate that PDQ significantly outperforms TCP, RCP and D3 in data center environments. We further show that PDQ is stable, resilien...