Motivated by online ad allocation, we study the problem of simultaneous approximations for the adversarial and stochastic online budgeted allocation problem. This problem consists of a bipartite graph G = (X, Y, E), where the nodes of Y along with their corresponding capacities are known beforehand to the algorithm, and the nodes of X arrive online. When a node of X arrives, its incident edges, and their respective weights are revealed, and the algorithm can match it to a neighbor in Y . The objective is to maximize the weight of the final matching, while respecting the capacities. When nodes arrive in an adversarial order, the best competitive ratio is known to be 1 − 1/e, and it can be achieved by the Ranking [18], and its generalizations (Balance [16, 21]). On the other hand, if the nodes arrive through a random permutation, it is possible to achieve a competitive ratio of 1 − [9]. In this paper we design algorithms that achieve a competitive ratio better than 1 − 1/e on ave...
Vahab S. Mirrokni, Shayan Oveis Gharan, Morteza Za