Scene labeling research has mostly focused on outdoor scenes, leaving the harder case of indoor scenes poorly understood. Microsoft Kinect dramatically changed the landscape, showing great potentials for RGB-D perception (color+depth). Our main objective is to empirically understand the promises and challenges of scene labeling with RGB-D. We use the NYU Depth Dataset as collected and analyzed by Silberman and Fergus [30]. For RGBD features, we adapt the framework of kernel descriptors that converts local similarities (kernels) to patch descriptors. For contextual modeling, we combine two lines of approaches, one using a superpixel MRF, and the other using a segmentation tree. We find that (1) kernel descriptors are very effective in capturing appearance (RGB) and shape (D) similarities; (2) both superpixel MRF and segmentation tree are useful in modeling context; and (3) the key to labeling accuracy is the ability to efficiently train and test with large-scale data. We improve labe...