This work presents a classification of weak models of distributed computing. We focus on deterministic distributed algorithms, and we study models of computing that are weaker versions of the widely-studied port-numbering model. In the port-numbering model, a node of degree d receives messages through d input ports and it sends messages through d output ports, both numbered with 1, 2, . . . , d. In this work, VVc is the class of all graph problems that can be solved in the standard port-numbering model. We study the following subclasses of VVc: VV: Input port i and output port i are not necessarily connected to the same neighbour. MV: Input ports are not numbered; algorithms receive a multiset of messages. SV: Input ports are not numbered; algorithms receive a set of messages. VB: Output ports are not numbered; algorithms send the same message to all output ports. MB: Combination of MV and VB. SB: Combination of SV and VB. Now we have many trivial containment relations, such as SB ...