Sciweavers

ACL
2012

Learning High-Level Planning from Text

12 years 2 months ago
Learning High-Level Planning from Text
Comprehending action preconditions and effects is an essential step in modeling the dynamics of the world. In this paper, we express the semantics of precondition relations extracted from text in terms of planning operations. The challenge of modeling this connection is to ground language at the level of relations. This type of grounding enables us to create high-level plans based on language abstractions. Our model jointly learns to predict precondition relations from text and to perform high-level planning guided by those relations. We implement this idea in the reinforcement learning framework using feedback automatically obtained from plan execution attempts. When applied to a complex virtual world and text describing that world, our relation extraction technique performs on par with a supervised baseline, yielding an F-measure of 66% compared to the baseline’s 65%. Additionally, we show that a high-level planner utilizing these extracted relations significantly outperforms a s...
S. R. K. Branavan, Nate Kushman, Tao Lei, Regina B
Added 29 Sep 2012
Updated 29 Sep 2012
Type Journal
Year 2012
Where ACL
Authors S. R. K. Branavan, Nate Kushman, Tao Lei, Regina Barzilay
Comments (0)