Although much work on relation extraction has aimed at obtaining static facts, many of the target relations are actually fluents, as their validity is naturally anchored to a certain time period. This paper proposes a methodological approach to temporally anchored relation extraction. Our proposal performs distant supervised learning to extract a set of relations from a natural language corpus, and anchors each of them to an interval of temporal validity, aggregating evidence from documents supporting the relation. We use a rich graphbased document-level representation to generate novel features for this task. Results show that our implementation for temporal anchoring is able to achieve a 69% of the upper bound performance imposed by the relation extraction step. Compared to the state of the art, the overall system achieves the highest precision reported.