Abstract. The Ring-LWE problem, introduced by Lyubashevsky, Peikert, and Regev (Eurocrypt 2010), has been steadily finding many uses in numerous cryptographic applications. Still, the Ring-LWE problem defined in [LPR10] involves the fractional ideal R∨ , the dual of the ring R, which is the source of many theoretical and implementation technicalities. Until now, getting rid of R∨ , required some relatively complex transformation that substantially increase the magnitude of the error polynomial and the practical complexity to sample it. It is only for rings R = Z[X]/(Xn + 1) where n a power of 2, that this transformation is simple and benign. In this work we show that by applying a different, and much simpler transformation, one can transfer the results from [LPR10] into an “easyto-use” Ring-LWE setting (i.e. without the dual ring R∨ ), with only a very slight increase in the magnitude of the noise coefficients. Additionally, we show that creating the correct noise distribu...