Dynamically discovering likely program invariants from concrete test executions has emerged as a highly promising software engineering technique. Dynamic invariant inference has the advantage of succinctly summarizing both "expected"program inputs and the subset of program behaviors that is normal under those inputs. In this paper, we introduce a technique that can drastically increase the relevance of inferred invariants, or reduce the size of the test suite required to obtain good invariants. Instead of falsifying invariants produced by pre-set patterns, we determine likely program invariants by combining the concrete execution of actual test cases with a simultaneous symbolic execution of tests. The symbolic execution produces abstract conditions over program variables that the concrete tests satisfy during their execution. In this way, we obtain the benefits of dynamic inference tools like Daikon: the inferred invariants correspond to the observed program behaviors. At t...