Nondeterminism is a key challenge in developing multithreaded applications. Even with the same input, each execution of a multithreaded program may produce a different output. This behavior complicates debugging and limits one’s ability to test for correctness. This non-reproducibility situation is aggravated on massively parallel architectures like graphics processing units (GPUs) with thousands of concurrent threads. We believe providing a deterministic environment to ease debugging and testing of GPU applications is essential to enable a broader class of software to use GPUs. Many hardware and software techniques have been proposed for providing determinism on general-purpose multi-core processors. However, these techniques are designed for small numbers of threads. Scaling them to thousands of threads on a GPU is a major challenge. This paper proposes a scalable hardware mechanism, GPUDet, to provide determinism in GPU architectures. In this paper we characterize the existing de...
Hadi Jooybar, Wilson W. L. Fung, Joseph Devietti,