In many emerging applications, the data which has to be monitored is of very high volume, dynamic, and distributed, making it infeasible to collect the distinct data streams to a central node and process them there. Often, the monitoring problem consists of determining whether the value of a global function, which depends on the union of all streams, crossed a certain threshold. A great deal of effort is directed at reducing communication overhead by transforming the monitoring of the global function to the testing of local constraints, checked independently at the nodes. Recently, geometric monitoring (GM) proved to be very useful for constructing such local constraints for general (non-linear, non-monotonic) functions. Alas, in all current variants of geometric monitoring, the constraints at all nodes share an identical structure and are, thus, unsuitable for handling heterogeneous streams, which obey different distributions at the distinct nodes. To remedy this, we propose a gene...