Increased volatility in electricity prices and new emerging demand side management opportunities call for efficient tools for the optimal operation of powerintensive processes. In this work, a general discrete-time model is proposed for the scheduling of power-intensive process networks with various power contracts. The proposed model consists of a network of processes represented by Convex Region Surrogate models that are incorporated in a mode-based scheduling formulation, for which a block contract model is considered that allows the modeling of a large variety of commonly used power contracts. The resulting mixed-integer linear programming model is applied to an illustrative example as well as to a real-world industrial test case. The results demonstrate the model’s capability in representing the operational flexibility in a process network and different electricity pricing structures. Moreover, because of its computational efficiency, the model holds much promise for its use ...
Qi Zhang, Arul Sundaramoorthy, Ignacio E. Grossman