Static and dynamic power constraints are steering chip manufacturers to build single-ISA Asymmetric Multicore Processors (AMPs) with big and small cores. To deliver on their energy efficiency potential, schedulers must consider core sensitivity, load balance, and the critical path. Applying these criteria effectively is challenging especially for complex and non-scalable multithreaded applications. We demonstrate that runtimes for managed languages, which ubiquitous, provide a unique opportunity to abstract over AMP complexity and inform scheduling with rich semantics such as thread priorities, locks, and parallelism— information not directly available to the hardware, OS, or application. We present the WASH AMP scheduler, which (1) automatically identifies and accelerates critical threads in concurrent, but non-scalable applications; (2) respects thread priorities; (3) considers core availability and thread sensitivity; and (4) proportionally schedules threads on big and small co...
Ivan Jibaja, Ting Cao, Stephen M. Blackburn, Kathr