In attribute-based signatures, each signer receives a signing key from the authority, which is associated with the signer’s attribute, and using the signing key, the signer can issue a signature on any message under a predicate, if his attribute satisfies the predicate. One of the ultimate goals in this area is to support a wide class of predicates, such as the class of arbitrary circuits, with practical efficiency from a simple assumption, since these three aspects determine the usefulness of the scheme. We present an attribute-based signature scheme which allows us to use an arbitrary circuit as the predicate with practical efficiency from the symmetric external Diffie-Hellman assumption. We achieve this by combining the efficiency of Groth-Sahai proofs, which allow us to prove algebraic equations efficiently, and the expressiveness of Groth-Ostrovsky-Sahai proofs, which allow us to prove any NP relation via circuit satisfiability.