The article describes a reconstruction pipeline that generates piecewise-planar models of man-made environments using two calibrated views. The 3D space is sampled by a set of virtual cut planes that intersect the baseline of the stereo rig and implicitly define possible pixel correspondences across views. The likelihood of these correspondences being true matches is measured using signal symmetry analysis [1], which enables to obtain profile contours of the 3D scene that become lines whenever the virtual cut planes intersect planar surfaces. The detection and estimation of these lines cuts is formulated as a global optimization problem over the symmetry matching cost, and pairs of reconstructed lines are used to generate plane hypotheses that serve as input to PEARL clustering [2]. The PEARL algorithm alternates between a discrete optimization step, which merges planar surface hypotheses and discards detections with poor support, and a continuous optimization step, which refines t...
Michel Antunes, João P. Barreto, Urbano Nun