Mazur, Tate, and Teitelbaum gave a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the padic L-function of a modular abelian variety and showing it satisfies the appropriate interpolation property. We describe the techniques used to formulate the conjecture and give evidence supporting the conjecture in the case when the modular abelian variety is of dimension 2.
Jennifer S. Balakrishnan, J. Steffen Müller,