Sciweavers

ISBI
2002
IEEE

Automatic segmentation of mammographic masses using fuzzy shadow and maximum-likelihood analysis

15 years 1 months ago
Automatic segmentation of mammographic masses using fuzzy shadow and maximum-likelihood analysis
This study attempted to accurately segment tumors in mammograms. Although this task is considered to be a preprocessing step in a computer analysis program, it plays an important role for further analysis of breast lesions. The region of interest (ROI) was segmented using the pixel aggregation and region growing techniques combined with maximum likelihood analysis. A fast segmentation algorithm has been developed to facilitate the segmentation process. The algorithm repetitively sweeps the ROI horizontally and vertically to aggregate the pixels that have intensities higher than a threshold. The ROI is then fuzzified by the Gaussian envelope. With each segmented region for a given threshold step in the original ROI, the likelihood function is computed and is comprised of probability density functions inside and outside of the fuzzified ROI. We have implemented this method to test on 90 mammograms. We found the segmented region with the maximum likelihood corresponds to the body of tumo...
Lisa Kinnard, Shih-Chung Ben Lo, Paul C. Wang, Mat
Added 20 Nov 2009
Updated 20 Nov 2009
Type Conference
Year 2002
Where ISBI
Authors Lisa Kinnard, Shih-Chung Ben Lo, Paul C. Wang, Matthew T. Freedman, Mohamed F. Chouikha
Comments (0)