Sciweavers

ISBI
2004
IEEE

Automated Classification of Subcellular Patterns In Multicell Images Without Segmentation Into Single Cells

15 years 5 days ago
Automated Classification of Subcellular Patterns In Multicell Images Without Segmentation Into Single Cells
Fluorescence microscope images capture information from an entire field of view, which often comprises several cells scattered on the slide. We have previously trained classifiers to accurately predict subcellular location patterns by using numerical features calculated from manually cropped 2D single-cell images. We describe here results on directly classifying fields of fluorescence microscope images using a subset of our previous features that do not require segmentation into single cells. Feature selection was conducted by stepwise discriminant analysis (SDA) to select the most discriminative features from the feature set. Better classification performance was achieved on multicell images than single-cell images, suggesting a promising future for classifying subcellular patterns in tissue images.
Kai Huang, Robert F. Murphy
Added 20 Nov 2009
Updated 20 Nov 2009
Type Conference
Year 2004
Where ISBI
Authors Kai Huang, Robert F. Murphy
Comments (0)