Advanced learning technologies are reaching a new phase of their evolution where they are finally entering mainstream educational contexts, with persistent user bases. However, as AIED scales, it will need to follow recent trends in service-oriented and ubiquitous computing: breaking AIED platforms into distinct services that can be composed for different platforms (web, mobile, etc.) and distributed across multiple systems. This will represent a move from learning platforms to an ecosystem of interacting learning tools. Such tools will enable new opportunities for both user-adaptation and experimentation. Traditional macro-adaptation (problem selection) and step-based adaptation (hints and feedback) will be extended by meta-adaptation (adaptive system selection) and micro-adaptation (event-level optimization). The existence of persistent and widely-used systems will also support new paradigms for experimentation in education, allowing researchers to understand interactions and boundar...
Benjamin D. Nye