—Compressed sensing utilizes the sparsity of Magnetic resonance (MR) images to obtain accurate reconstructions from undersampled k-space data. In this paper, a novel nonlocal dynamic MRI reconstruction method with low-rank regularization is developed to exploit the spatiotemporal structural sparsity of a MRI sequence. The nonlocal prior and low rank prior are combined organically by grouping similar patches in both spatial and temporal domain. The low-rank regularization can be approximated by nuclear norm minimization solved by a singular value thresholding (SVT) method with adaptive thresholds estimation. The objective function is divided into several sub-problems that are easier to solve by alternative direction multiplier method (ADMM). Extensive experiments show that the new method outperforms commonly used classical dynamic MRI reconstruction algorithms.