We present the first approach to deduce lower bounds for innermost runtime complexity of term rewrite systems (TRSs) automatically. Inferring lower runtime bounds is useful to detect bugs and to complement existing techniques that compute upper complexity bounds. The key idea of our approach is to generate suitable families of rewrite sequences of a TRS and to find a relation between the length of such a rewrite sequence and the size of the first term in the sequence. We implemented our approach in the tool AProVE and evaluated it by extensive experiments.