Abstract. Ornamentations in music play a significant role for the emotion whi1ch a performer or a composer aims to create. The automated identification of ornamentations enhances the understanding of music, which can be used as a feature for tasks such as performer identification or mood classification. Existing methods rely on a pre-processing step that performs note segmentation. We propose an alternative method by adapting the existing two-dimensional COSFIRE filter approach to onedimension (1D) for the automatic identification of ornamentations in monophonic folk songs. We construct a set of 1D COSFIRE filters that are selective for the 12 notes of the Western music theory. The response of a 1D COSFIRE filter is computed as the geometric mean of the differences between the fundamental frequency values in a local neighbourhood and the preferred values at the corresponding positions. We apply the proposed 1D COSFIRE filters to the pitch tracks of a song at every position alo...
Andreas C. Neocleous, George Azzopardi, Christos S