We propose a novel interactive multi-label RGB-D image segmentation method by extending spatially varying color distributions [14] to additionally utilize depth information in two different ways. On the one hand, we consider the depth image as an additional data channel. On the other hand, we extend the idea of spatially varying color distributions in a plane to volumetrically varying color distributions in 3D. Furthermore, we improve the data fidelity term by locally adapting the influence of nearby scribbles around each pixel. Our approach is implemented for parallel hardware and evaluated on a novel interactive RGB-D image segmentation benchmark with pixel-accurate ground truth. We show that depth information leads to considerably more precise segmentation results. At the same time significantly less user scribbles are required for obtaining the same segmentation accuracy as without using depth clues.