We introduce Falcon codes, a class of authenticated error correcting codes that are based on LT codes and achieve the following properties, for the first time simultaneously: (1) with high probability, they can correct adversarial corruptions of an encoded message, and (2) they allow very efficient encoding and decoding times, even linear in the message length. Our design framework encompasses a large number of such coding schemes. Through judicious use of simple cryptographic tools at the core LT-coding level, Falcon codes lend themselves to secure extensions of any LT-based fountain code, in particular providing Raptor codes that achieve resilience to adversarial corruptions while maintaining their fast encoding/decoding times. Falcon codes also come in three variants, each offering different performance trade-offs. For instance, one variant works well with small input messages (100s of KB to 10s of MB), but two other variants are designed to handle much larger messages (several G...