We address the problem of fast and accurate localization of miniature surgical instruments like needles or electrodes using 3D ultrasound (US). An algorithm based on maximizing a Parallel Integral Transform (PIP) can automatically localize line-shaped objects in 3D US images with accuracy on the order of hundreds of micrometers. Here we propose to use a multi-resolution to accelerate the algorithm significantly. We use a maximum function for downsampling to preserve the high intensity voxels of a thin electrode. We integrate the multi-resolution pyramid into a hierarchical mesh-grid search of PIP. The experiments with a tissue mimicking phantom and breast biopsy data show that proposed method works well on real US images. The speed-up is threefold compared to original PIP method with the same accuracy 0.4 mm. A further speed-up up to 16 times is reached by an early stopping of the optimization, at the expense of some loss of accuracy.