Current search mechanisms of DHT-based P2P systems can well handle a single keyword search problem. Other than single keyword search, multi-keyword search is quite popular and useful in many real applications. Simply using the solution for single keyword search will require distributed intersection/union operations in wide area networks, leading to unacceptable traffic cost. As it is well known that Bloom Filter (BF) is effective in reducing traffic, we would like to use BF encoding to handle multi-keyword search. Applying BF is not difficult, but how to get optimal results is not trivial. In this study we show, through mathematical proof, that the optimal setting of BF in terms of traffic cost is determined by the global statistical information of keywords, not the minimized false positive rate as claimed by previous methods. Through extensive experiments, we demonstrate how to obtain optimal settings. We further argue that the intersection order between sets is important for multi-k...