This paper investigates the use of colour and texture cues for segmentation of images within two specified domains. The first is the Sowerby dataset, which contains one hundred colour photographs of country roads in England that have been interactively segmented and classified into six classes ? edge, vegetation, air, road, building, and other. The second domain is a set of thirty five images, taken in San Francisco, which have been interactively segmented into similar classes. In each domain we learn the joint probability distributions of filter responses, based on colour and texture, for each class. These distributions are then used for classification. We restrict ourselves to a limited number of filters in order to ensure that the learnt filter responses do not overfit the training data (our region classes are chosen so as to ensure that there is enough data to avoid overfitting). We do performance analysis on the two datasets by evaluating the false positive and false negative err...
Scott Konishi, Alan L. Yuille