The overwhelming success of the Web as a mechanism for facilitating information retrieval and for conducting business transactions has led to an increase in the deployment of complex enterprise applications. These applications typically run on Web Application Servers, which assume the burden of managing many tasks, such as concurrency, memory management, database access, etc., required by these applications. The performance of an Application Server depends heavily on appropriate configuration. Configuration is a difficult and error-prone task due to the large number of configuration parameters and complex interactions between them. We formulate the problem of finding an optimal configuration for a given application as a black-box optimization problem. We propose a Smart Hill-Climbing algorithm using ideas of importance sampling and Latin Hypercube Sampling (LHS). The algorithm is efficient in both searching and random sampling. It consists of estimating a local function, and then, hil...
Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H.