The organization of HTML into a tag tree structure, which is rendered by browsers as roughly rectangular regions with embedded text and HREF links, greatly helps surfers locate and click on links that best satisfy their information need. Can an automatic program emulate this human behavior and thereby learn to predict the relevance of an unseen HREF target page w.r.t. an information need, based on information limited to the HREF source page? Such a capability would be of great interest in focused crawling and resource discovery, because it can fine-tune the priority of unvisited URLs in the crawl frontier, and reduce the number of irrelevant pages which are fetched and discarded. We show that there is indeed a great deal of usable information on a HREF source page about the relevance of the target page. This information, encoded suitably, can be exploited by a supervised apprentice which takes online lessons from a traditional focused crawler by observing a carefully designed set of f...