The serious bugs and security vulnerabilities facilitated by C/C++'s lack of bounds checking are well known, yet C and C++ remain in widespread use. Unfortunately, C's arbitrary pointer arithmetic, conflation of pointers and arrays, and programmer-visible memory layout make retrofitting C/C++ with spatial safety guarantees extremely challenging. Existing approaches suffer from incompleteness, have high runtime overhead, or require non-trivial changes to the C source code. Thus far, these deficiencies have prevented widespread adoption of such techniques. This paper proposes SoftBound, a compile-time transformation for enforcing spatial safety of C. Inspired by HardBound, a previously proposed hardware-assisted approach, SoftBound similarly records base and bound information for every pointer as disjoint metadata. This decoupling enables SoftBound to provide spatial safety without requiring changes to C source code. Unlike HardBound, SoftBound is a software-only approach and ...
Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Mar