This paper presents an application of finite state transducers weighted with feature structure descriptions, following Amtrup (2003), to the morphology of the Semitic language Tigrinya. It is shown that feature-structure weights provide an efficient way of handling the templatic morphology that characterizes Semitic verb stems as well as the long-distance dependencies characterizing the complex Tigrinya verb morphotactics. A relatively complete computational implementation of Tigrinya verb morphology is described.