Decreasing hardware reliability is expected to impede the exploitation of increasing integration projected by Moore's Law. There is much ongoing research on efficient fault tolerance mechanisms across all levels of the system stack, from the device level to the system level. High-level fault tolerance solutions, such as at the microarchitecture and system levels, are commonly evaluated using statistical fault injections with microarchitecture-level fault models. Since hardware faults actually manifest at a much lower level, it is unclear if such high level fault models are acceptably accurate. On the other hand, lower level models, such as at the gate level, may be more accurate, but their increased simulation times make it hard to track the system-level propagation of faults. Thus, an evaluation of high-level reliability solutions entails the classical tradeoff between speed and accuracy. This paper seeks to quantify and alleviate this tradeoff. We make the following contributio...
Man-Lap Li, Pradeep Ramachandran, Ulya R. Karpuzcu