As a fundamental data mining task, frequent pattern mining has widespread applications in many different domains. Research in frequent pattern mining has so far mostly focused on developing efficient algorithms to discover various kinds of frequent patterns, but little attention has been paid to the important next step ? interpreting the discovered frequent patterns. Although some recent work has studied the compression and summarization of frequent patterns, the proposed techniques can only annotate a frequent pattern with non-semantical information (e.g. support), which provides only limited help for a user to understand the patterns. In this paper, we propose the novel problem of generating semantic annotations for frequent patterns. The goal is to annotate a frequent pattern with in-depth, concise, and structured information that can better indicate the hidden meanings of the pattern. We propose a general approach to generate such an annotation for a frequent pattern by constructi...