Joint mining of multiple data sets can often discover interesting, novel, and reliable patterns which cannot be obtained solely from any single source. For example, in cross-market customer segmentation, a group of customers who behave similarly in multiple markets should be considered as a more coherent and more reliable cluster than clusters found in a single market. As another example, in bioinformatics, by joint mining of gene expression data and protein interaction data, we can find clusters of genes which show coherent expression patterns and also produce interacting proteins. Such clusters may be potential pathways. In this paper, we investigate a novel data mining problem, mining cross-graph quasi-cliques, which is generalized from several interesting applications such as cross-market customer segmentation and joint mining of gene expression data and protein interaction data. We build a general model for mining cross-graph quasicliques, show why the complete set of cross-graph...