The problem of measuring "similarity" of objects arises in many applications, and many domain-specific measures have been developed, e.g., matching text across documents or computing overlap among item-sets. We propose a complementary approach, applicable in any domain with object-to-object relationships, that measures similarity of the structural context in which objects occur, based on their relationships with other objects. Effectively, we compute a measure that says "two objects are similar if they are related to similar objects." This general similarity measure, called SimRank, is based on a simple and intuitive graph-theoretic model. For a given domain, SimRank can be combined with other domain-specific similarity measures. We suggest techniques for efficient computation of SimRank scores, and provide experimental results on two application domains showing the computational feasibility and effectiveness of our approach.