Sciweavers

CVPR
2004
IEEE

PCA-SIFT: A More Distinctive Representation for Local Image Descriptors

15 years 1 months ago
PCA-SIFT: A More Distinctive Representation for Local Image Descriptors
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deformations. This paper examines (and improves upon) the local image descriptor used by SIFT. Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point's neighborhood; however, instead of using SIFT's smoothed weighted histograms, we apply Principal Components Analysis (PCA) to the normalized gradient patch. Our experiments demonstrate that the PCAbased local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation. We also present results showing that using these descriptors in an image retrieval application results in increased accuracy and faster matching.
Yan Ke, Rahul Sukthankar
Added 12 Oct 2009
Updated 29 Oct 2009
Type Conference
Year 2004
Where CVPR
Authors Yan Ke, Rahul Sukthankar
Comments (0)