Skin detection is an important preliminary process in human motion analysis. It is commonly performed in three steps: transforming the pixel color to a non-RGB colorspace, dropping the illuminance component of skin color, and classifying by modeling the skin color distribution. In this paper, we evaluate the effect of these three steps on the skin detection performance. The importance of this study is a new comprehensive colorspace and color modeling testing methodology that would allow for making the best choices for skin detection. Combinations of nine colorspaces, the presence of the absence of the illuminance component, and the two color modeling approaches are compared. The performance is measured by using a receiver operating characteristic (ROC) curve on a large dataset of 805 images with manual ground truth. The results reveal that (1) colorspace transformations can improve performance in certain instances, (2) the absence of the illuminance component decreases performance, an...
Sriram Jayaram, Stephen Schmugge, Min C. Shin, Leo