We present a new approach, called local discriminant embedding (LDE), to manifold learning and pattern classification. In our framework, the neighbor and class relations of data are used to construct the embedding for classification problems. The proposed algorithm learns the embedding for the submanifold of each class by solving an optimization problem. After being embedded into a low-dimensional subspace, data points of the same class maintain their intrinsic neighbor relations, whereas neighboring points of different classes no longer stick to one another. Via embedding, new test data are thus more reliably classified by the nearest neighbor rule, owing to the locally discriminating nature. We also describe two useful variants: twodimensional LDE and kernel LDE. Comprehensive comparisons and extensive experiments on face recognition are included to demonstrate the effectiveness of our method.