Sciweavers

STOC
2007
ACM

Balanced allocations: the weighted case

14 years 11 months ago
Balanced allocations: the weighted case
We investigate balls-and-bins processes where m weighted balls are placed into n bins using the "power of two choices" paradigm, whereby a ball is inserted into the less loaded of two randomly chosen bins. The case where each of the m balls has unit weight had been studied extensively. In a seminal paper Azar et al. [2] showed that when m = n the most loaded bin has (log log n) balls with high probability. Surprisingly, the gap in load between the heaviest bin and the average bin does not increase with m and was shown by Berenbrink et al. [4] to be (log log n) with high probability for arbitrarily large m. We generalize this result to the weighted case where balls have weights drawn from an arbitrary weight distribution. We show that as long as the weight distribution has finite second moment and satisfies a mild technical condition, the gap between the weight of the heaviest bin and the weight of the average bin is independent of the number balls thrown. This is especially ...
Kunal Talwar, Udi Wieder
Added 03 Dec 2009
Updated 03 Dec 2009
Type Conference
Year 2007
Where STOC
Authors Kunal Talwar, Udi Wieder
Comments (0)