Sciweavers

STOC
2007
ACM

Balanced max 2-sat might not be the hardest

15 years 24 days ago
Balanced max 2-sat might not be the hardest
We show that, assuming the Unique Games Conjecture, it is NPhard to approximate MAX 2-SAT within LLZ + , where 0.9401 < LLZ < 0.9402 is the believed approximation ratio of the algorithm of Lewin, Livnat and Zwick [28]. This result is surprising considering the fact that balanced instances of MAX 2-SAT, i.e., instances where each variable occurs positively and negatively equally often, can be approximated within 0.9439. In particular, instances in which roughly 68% of the literals are unnegated variables and 32% are negated appear less amenable to approximation than instances where the ratio is 50%-50%. Categories and Subject Descriptors F.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems General Terms Theory Keywords Max 2-Sat, Unique Games Conjecture, Inapproximability
Per Austrin
Added 03 Dec 2009
Updated 03 Dec 2009
Type Conference
Year 2007
Where STOC
Authors Per Austrin
Comments (0)