We study rerouting policies in a dynamic round-based variant of a well known game theoretic traffic model due to Wardrop. Previous analyses (mostly in the context of selfish routing) based on Wardrop's model focus mostly on the static analysis of equilibria. In this paper, we ask the question whether the population of agents responsible for routing the traffic can jointly compute or better learn a Wardrop equilibrium efficiently. The rerouting policies that we study are of the following kind. In each round, each agent samples an alternative routing path and compares the latency on this path with its current latency. If the agent observes that it can improve its latency then it switches with some probability depending on the possible improvement to the better path. We can show various positive results based on a rerouting policy using an adaptive sampling rule that implicitly amplifies paths that carry a large amount of traffic in the Wardrop equilibrium. For general asymmetric ga...