Consider a setting in which a group of nodes, situated in a large underlying network, wishes to reserve bandwidth on which to support communication. Virtual private networks (VPNs) are services that support such a construct; rather than building a new physical network on the group of nodes that must be connected, bandwidth in the underlying network is reserved for communication within the group, forming a virtual "sub-network." Provisioning a virtual private network over a set of terminals gives rise to the following general network design problem. We have bounds on the cumulative amount of traffic each terminal can send and receive; we must choose a path for each pair of terminals, and a bandwidth allocation for each edge of the network, so that any traffic matrix consistent with the given upper bounds can be feasibly routed. Thus, we are seeking to design a network that can support a continuum of possible traffic scenarios. We provide optimal and approximate algorithms for...
Anupam Gupta, Jon M. Kleinberg, Amit Kumar, Rajeev