Sciweavers

OSDI
2008
ACM

Probabilistic Inference in Queueing Networks

14 years 11 months ago
Probabilistic Inference in Queueing Networks
Although queueing models have long been used to model the performance of computer systems, they are out of favor with practitioners, because they have a reputation for requiring unrealistic distributional assumptions. In fact, these distributional assumptions are used mainly to facilitate analytic approximations such as asymptotics and large-deviations bounds. In this paper, we analyze queueing networks from the probabilistic modeling perspective, applying inference methods from graphical models that afford significantly more modeling flexibility. In particular, we present a Gibbs sampler and stochastic EM algorithm for networks of M/M/1 FIFO queues. As an application of this technique, we localize performance problems in distributed systems from incomplete system trace data. On both synthetic networks and an actual distributed Web application, the model accurately recovers the system's service time using 1% of the available trace data.
Charles A. Sutton, Michael I. Jordan
Added 03 Dec 2009
Updated 03 Dec 2009
Type Conference
Year 2008
Where OSDI
Authors Charles A. Sutton, Michael I. Jordan
Comments (0)