In the interference scheduling problem, one is given a set of n communication requests described by sourcedestination pairs of nodes from a metric space. The nodes correspond to devices in a wireless network. Each pair must be assigned a power level and a color such that the pairs in each color class can communicate simultaneously at the specified power levels. The feasibility of simultaneous communication within a color class is defined in terms of the Signal to Interference plus Noise Ratio (SINR) that compares the strength of a signal at a receiver to the sum of the strengths of other signals. The objective is to minimize the number of colors as this corresponds to the time needed to schedule all requests. We introduce an instance-based measure of interference, denoted by I, that enables us to improve on previous results for the interference scheduling problem. We prove upper and lower bounds in terms of I on the number of steps needed for scheduling a set of requests. For general ...