The deep Web presents a pressing need for integrating large numbers of dynamically evolving data sources. To be more automatic yet accurate in building an integration system, we observe two problems: First, across sequential tasks in integration, how can a wrapper (as an extraction task) consider the peer sources to facilitate the subsequent matching task? Second, across parallel sources, how can a wrapper leverage the peer wrappers or domain rules to enhance extraction accuracy? These issues, while seemingly unrelated, both boil down to the lack of "context awareness": Current automatic wrapper induction approaches generate a wrapper for one source at a time, in isolation, and thus inherently lack the awareness of the peer sources or domain knowledge in the context of integration. We propose the concept of context-aware wrappers that are amenable to matching and that can leverage peer wrappers or prior domain knowledge. Such context awareness inspires a synchronization fram...