Reverse skyline queries over uncertain databases have many important applications such as sensor data monitoring and business planning. Due to the existence of uncertainty in many real-world data, answering reverse skyline queries accurately and efficiently over uncertain data has become increasingly important. In this paper, we model the probabilistic reverse skyline query on uncertain data, in both monochromatic and bichromatic cases, and propose effective pruning methods to reduce the search space of query processing. Moreover, efficient query procedures have been presented seamlessly integrating the proposed pruning methods. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approach with various experimental settings. Categories and Subject Descriptors H.2.8 [Information Systems]: Database Management--Database applications, Spatial databases and GIS; H.3.3 [Information Systems]: Information Storage and retrieval--Information search and retrie...