Real-world data -- especially when generated by distributed measurement infrastructures such as sensor networks -- tends to be incomplete, imprecise, and erroneous, making it impossible to present it to users or feed it directly into applications. The traditional approach to dealing with this problem is to first process the data using statistical or probabilistic models that can provide more robust interpretations of the data. Current database systems, however, do not provide adequate support for applying models to such data, especially when those models need to be frequently updated as new data arrives in the system. Hence, most scientists and engineers who depend on models for managing their data do not use database systems for archival or querying at all; at best, databases serve as a persistent raw data store. In this paper we define a new abstraction called modelbased views and present the architecture of MauveDB, the system we are building to support such views. Just as traditio...